ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]      



Задача 109458

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Средние величины ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?

Прислать комментарий     Решение

Задача 109464

Темы:   [ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.

Прислать комментарий     Решение

Задача 109477

Тема:   [ Средние величины ]
Сложность: 3
Классы: 6,7,8,9

Люди заходят с улицы в метро равномерно. Пройдя через турникеты, они оказываются в небольшом зале перед эскалаторами. Двери на вход только что открылись, и сначала зал перед эскалаторами был пустой, а на спуск работал только один эскалатор. Один эскалатор не справлялся с толпой, так что за 6 минут зал наполовину заполнился. Тогда включили на спуск второй эскалатор, но толпа продолжала увеличиваться – ещё через 15 минут зал был полон.

За какое время зал опустеет, если включить третий эскалатор?
Прислать комментарий     Решение

Задача 109454

Темы:   [ Инварианты ]
[ Раскраски ]
[ Четность и нечетность ]
[ Пятиугольники ]
Сложность: 3+
Классы: 7,8,9

В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций?

Прислать комментарий     Решение

Задача 109459

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 3+
Классы: 8,9

В выпуклом четырехугольнике ABCD выполняются равенства:  ∠CBD = ∠CAB  и  ∠ACD = ∠ADB.
Докажите, что из отрезков BC, AD и AC можно сложить прямоугольный треугольник.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .