|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны две бесконечные прогрессии: арифметическая a1, a2, a3, ... и геометрическая b1, b2, b3, ..., причём все числа, которые встречаются среди членов геометрической прогрессии, встречаются также и среди членов арифметической прогрессии. Докажите, что знаменатель геометрической прогрессии – целое число. |
Страница: 1 2 3 4 >> [Всего задач: 16]
Разделить a128 – b128 на (a + b)(a² + b²)(a4 + b4)(a8 + b8)(a16 + b16)(a32 + b32)(a64 + b64).
Разделить a2k – b2k на (a + b)(a² + b²)(a4 + b4)...(a2k–1 + b2k–1).
Решить в целых числах уравнение xy + 3x – 5y = – 3.
Доказать, что при любом целом положительном n сумма
Страница: 1 2 3 4 >> [Всего задач: 16] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|