|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| . |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]
Сумма 31974 + 51974 делится на 13. Докажите это.
Даны два набора из n вещественных чисел: a1, a2, ..., an и b1, b2, ..., bn. Докажите, что если выполняется хотя бы одно из двух условий:
Можно ли провести построение, если расстояния rij заданы так, что всякие 5 из N точек построить можно? б) Достаточно ли требовать, чтобы можно было построить всякие 4 из в) Что изменится, если строить точки не на плоскости, а в пространстве? Каково тогда
С помощью циркуля и линейки постройте треугольник по центру его описанной окружности и двум прямым, на которых лежат высоты треугольника.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|