ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 557]      



Задача 64330

Темы:   [ Пятиугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8

Существует ли пятиугольник, который одним прямолинейным разрезом можно разбить на три части так, что из двух частей можно будет сложить третью?

Прислать комментарий     Решение

Задача 64331

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3+
Классы: 7,8

На белых и чёрных клетках доски 10×10 стоит по одинаковому количеству ладей так, что никакие две ладьи друг друга не бьют.
Докажите, что на эту доску можно поставить еще одну ладью так, чтобы она не била никакую из уже стоящих.

Прислать комментарий     Решение

Задача 64411

Тема:   [ Производная и кратные корни ]
Сложность: 3+
Классы: 10,11

Докажите, что при  n > 0  многочлен  x2n+1 – (2n + 1)xn+1 + (2n + 1)xn – 1  делится на  (x – 1)³.

Прислать комментарий     Решение

Задача 64425

Темы:   [ Задачи на движение ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10,11

По круговой дорожке стадиона длиной 400 метров из одной точки в одном направлении выбегают три спортсмена с постоянными скоростями 12 км/ч,
15 км/ч и 17 км/ч. Через какое наименьшее время спортсмены поравняются?

Прислать комментарий     Решение

Задача 64426

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Углы между биссектрисами ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 9,10,11

В треугольнике АВС из вершин А и В проведены биссектрисы, а из вершины С – медиана. Оказалось, что точки их попарного пересечения образуют прямоугольный равнобедренный треугольник. Найдите углы треугольника АВС.

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .