ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 557]      



Задача 64566

Темы:   [ Взвешивания ]
[ Арифметическая прогрессия ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

На диске хранится 2013 файлов размером 1 Мб, 2 Мб, 3 Мб, ..., 2012 Мб, 2013 Мб. Можно ли их распределить по трём папкам так, чтобы в каждой папке было одинаковое количество файлов и все три папки имели один и тот же размер (в Мб)?

Прислать комментарий     Решение

Задача 64567

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 3+
Классы: 8,9

На равных сторонах AB и BC треугольника ABC выбраны точки M и N соответственно так, что  AC = CM  и  MN = NB.  Высота треугольника, проведенная из вершины B, пересекает отрезок CM в точке H. Докажите, что NH – биссектриса угла MNC.

Прислать комментарий     Решение

Задача 64568

Темы:   [ Числовые последовательности (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Толя выложил в ряд 101 монету достоинством 1, 2 и 3 копейки. Оказалось, что между каждыми двумя копеечными монетами лежит хотя бы одна монета, между каждыми двумя двухкопеечными монетами лежат хотя бы две монеты, а между каждыми двумя трёхкопеечными монетами лежат хотя бы три монеты. Сколько трёхкопеечных монет могло быть у Толи?

Прислать комментарий     Решение

Задача 64666

Темы:   [ Прямые и плоскости в пространстве (прочее) ]
[ Параллельное проектирование (прочее) ]
[ Движение помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Даны две пересекающиеся плоскости, в одной из которых лежит произвольный треугольник площади S.
Существует ли его параллельная проекция на вторую плоскость, имеющая ту же площадь S?

Прислать комментарий     Решение

Задача 64670

Темы:   [ Турниры и турнирные таблицы ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

В турнире по игре в "крестики – нолики", проведённом по системе "проиграл – выбыл", участвовали 18 школьников. Каждый день играли одну партию, участников которой выбирали жребием из ещё не выбывших школьников. Каждый из шестерых школьников утверждает, что сыграл ровно четыре партии. Не ошибается ли кто-то из них?

Прислать комментарий     Решение

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .