ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В числовом треугольнике

каждое число равно сумме чисел, расположенных в предыдущей строке над этим числом и над его соседями справа и слева (отсутствующие числа считаются равными нулю). Докажите, что в каждой строке, начиная с третьей, найдутся чётные числа.

Вниз   Решение


Набор чисел  A1, A2, ..., A100  получен некоторой перестановкой из чисел 1, 2, ..., 100. Образуют сто чисел:
      B1 = A1B2 = A1 + A2B3 = A1 + A2 + A3,  ...,  B100 = A1 + A2 + A3 + ... + A100.
Докажите, что среди остатков от деления на 100 чисел  B1, B2, ..., B100  найдутся 11 различных.

ВверхВниз   Решение


Внутри квадрата расположены три окружности, каждая из которых касается внешним образом двух других, а также касается двух сторон квадрата. Докажите, что радиусы двух из данных окружностей одинаковы.

ВверхВниз   Решение


Автор: Мухин Д.Г.

В прямоугольном треугольнике ABC с прямым углом C провели биссектрисы AK и BN, на которые опустили перпендикуляры CD и CE из вершины прямого угла. Докажите, что длина отрезка DE равна радиусу вписанной окружности.

ВверхВниз   Решение


Дан многочлен  x(x + 1)(x + 2)(x + 3).  Найти его наименьшее значение.

ВверхВниз   Решение


а) На каждом из полей верхней и нижней горизонтали шахматной доски 8×8 стоит по фишке: внизу – белые, вверху – чёрные. За один ход разрешается передвинуть любую фишку на соседнюю свободную клетку по вертикали или горизонтали. За какое наименьшее число ходов можно добиться того, чтобы все чёрные фишки стояли внизу, а белые – вверху?

б) Тот же вопрос для доски 7×7.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98454  (#1)

Темы:   [ Четность и нечетность ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9

Несколько последовательных натуральных чисел выписали в строку в таком порядке, что сумма каждых трёх подряд идущих чисел делится на самое левое число этой тройки. Какое максимальное количество чисел могло быть выписано, если последнее число строки нёчётно?

Прислать комментарий     Решение

Задача 98455  (#2)

Темы:   [ Неравенства для площади треугольника ]
[ Площадь треугольника (через высоту и основание) ]
[ Монотонность, ограниченность ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9

Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC.
  а) Докажите, что площадь треугольника A'B'C' не больше половины площади треугольника ABC.
  б) Докажите, что площадь треугольника A'B'C' равна четверти площади треугольника ABC тогда и только тогда, когда хотя бы одна из точек A', C' совпадает с серединой соответствующей стороны.

Прислать комментарий     Решение

Задача 98456  (#3)

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 8,9

100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть равновесие.
Докажите, что можно убрать по две гирьки с каждой чаши так, что равновесие не нарушится.

Прислать комментарий     Решение


Задача 98457  (#4)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Теория алгоритмов ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

а) На каждом из полей верхней и нижней горизонтали шахматной доски 8×8 стоит по фишке: внизу – белые, вверху – чёрные. За один ход разрешается передвинуть любую фишку на соседнюю свободную клетку по вертикали или горизонтали. За какое наименьшее число ходов можно добиться того, чтобы все чёрные фишки стояли внизу, а белые – вверху?

б) Тот же вопрос для доски 7×7.

Прислать комментарий     Решение

Задача 98458  (#5)

Темы:   [ Последовательности (прочее) ]
[ Процессы и операции ]
[ Десятичная система счисления ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Неутомимые Фома и Ерёма строят последовательность. Сначала в последовательности одно натуральное число. Затем они по очереди выписывают следующие числа: Фома получает очередное число, прибавляя к предыдущему любую из его цифр, а Ерёма – вычитая из предыдущего любую из его цифр. Докажите, что какое-то число в этой последовательности повторится не меньше 100 раз.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .