|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи 10 друзей послали друг другу праздничные открытки, так что каждый послал
пять открыток. В квадрате ABCD на стороне AB взята точка P, на стороне BC — точка Q, на стороне CD — точка R, на стороне DA — S; оказалось, что фигура PQRS — прямоугольник. Доказать, что тогда прямоугольник PQRS — либо квадрат, либо обладает тем свойством, что его стороны параллельны диагоналям квадрата. а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится? б) Тот же вопрос для четырёхзначных чисел. |
Страница: 1 [Всего задач: 5]
Барон Мюнхгаузен утверждает, что ему удалось составить некоторый прямоугольник из нескольких подобных между собой непрямоугольных треугольников. Можно ли ему верить? (Среди подобных треугольников могут быть и равные.)
б) Тот же вопрос для четырёхзначных чисел.
В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?
Положительные числа A, B, C и D таковы, что система уравнений
В угол вписана окружность с центром O. Через точку A, симметричную точке O относительно одной из сторон угла, провели к окружности касательные, точки пересечения которых с дальней от точки A стороной угла – B и C. Докажите, что центр описанной окружности треугольника ABC лежит на биссектрисе данного угла.
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|