ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Некоторые из 20 металлических кубиков, одинаковых по размерам и внешнему виду, алюминиевые, остальные (Предполагается, что все кубики могут быть алюминиевыми, но они не могут быть все дюралевыми (если все кубики окажутся одного веса, то нельзя выяснить, алюминиевые они или дюралевые) — прим. ред.) дюралевые (более тяжёлые). Как при помощи 11 взвешиваний на весах с 2-мя чашечками без гирь определить число дюралевых кубиков?

Вниз   Решение


Постройте четырехугольник ABCD по четырем сторонам и углу между AB и CD.

ВверхВниз   Решение


Многочлен степени  $n > 1$  имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$

ВверхВниз   Решение


Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале  (0, 1)?

ВверхВниз   Решение


а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится?
б) Тот же вопрос для четырёхзначных чисел.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98377  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Формула включения-исключения ]
Сложность: 2+
Классы: 6,7,8

Аня, Боря и Вася составляли слова из заданных букв. Все составили разное число слов: больше всех – Аня, меньше всех – Вася. Затем ребята просуммировали очки за свои слова. Если слово есть у двух игроков, за него даётся 1 очко, у одного игрока – 2 очка, слова, общие у всех трёх игроков, вычёркиваются. Могло ли так случиться, что больше всех очков набрал Вася, а меньше всех – Аня?

Прислать комментарий     Решение

Задача 98378  (#2)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.

Прислать комментарий     Решение

Задача 108081  (#3)

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 8,9

Отрезки AB и CD лежат на двух сторонах угла BOD (A лежит между O и B, C – между O и D). Через середины отрезков AD и BC проведена прямая, пересекающая стороны угла в точках M и N (M, A и B лежат на одной стороне угла; N, C и D – на другой). Докажите, что
OM : ON = AB : CD.

Прислать комментарий     Решение

Задача 98381  (#4')

Темы:   [ Целочисленные и целозначные многочлены ]
[ Делимость чисел. Общие свойства ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9

Незнайка решал уравнение, в левой части которого стоял многочлен третьей степени с целыми коэффициентами, а в правой – 0. Он нашёл корень 1/7. Знайка, заглянув к нему в тетрадь, увидел только первые два слагаемых многочлена:  19x³ + 98x²  и сразу сказал, что ответ неверен. Обоснуйте ответ Знайки.

Прислать комментарий     Решение

Задача 98380  (#4)

Темы:   [ Десятичная система счисления ]
[ Производящие функции ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9,10

а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится?
б) Тот же вопрос для четырёхзначных чисел.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .