|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Доказать, что остаток от деления простого числа на 30 – простое число или единица. Сережа и Миша, гуляя по парку, набрели на поляну, окруженную липами. Сережа пошёл вокруг поляны, считая деревья. Миша сделал то же самое, но начал с другого дерева (хотя пошёл в ту же сторону). Дерево, которое у Сережи было 20-м, у Миши было 7-м, а дерево, которое у Сережи было 7-м, у Миши было 94-м. Сколько деревьев росло вокруг поляны? Может ли быть верным равенство К×О×Т = У×Ч×Е×Н×Ы×Й, если в него вместо букв подставить цифры от 1 до 9? Разным буквам соответствуют разные цифры. Конечно или бесконечно число натуральных решений уравнения x² + y³ = z²? |
Страница: 1 [Всего задач: 4]
Конечно или бесконечно число натуральных решений уравнения x² + y³ = z²?
На гипотенузе AB прямоугольного треугольника ABC взяты такие точки M и N, что BC = BM и AC = AN. Докажите, что ∠MCN = 45°.
Числа 1, 2, 3, ..., 25 расставляют в таблицу 5×5 так, чтобы в каждой строке числа были расположены в порядке возрастания.
Петя хочет изготовить необычную игральную кость, которая, как обычно, должна иметь форму куба, на гранях которого нарисованы точки (на разных гранях разное число точек), но при этом на каждых двух соседних гранях число точек должно различаться по крайней мере на два (при этом разрешается, чтобы на некоторых гранях оказалось больше шести точек). Сколько всего точек необходимо для этого нарисовать?
Страница: 1 [Всего задач: 4] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|