|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) Докажите, что из медиан треугольника можно составить треугольник. б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4. Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.) |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]
Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.)
Как соединить 50 городов наименьшим числом авиалиний так, чтобы из каждого города можно было попасть в любой, сделав не более двух пересадок?
Даны числа: 4, 14, 24, ..., 94, 104. Докажите, что из них нельзя вычеркнуть сперва одно число, затем из оставшихся ещё два, затем ещё три и, наконец, ещё четыре числа так, чтобы после каждого вычёркивания сумма оставшихся чисел делилась на 11.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|