ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 78663

Темы:   [ Простые числа и их свойства ]
[ Тождественные преобразования ]
[ Арифметика остатков (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9,10

Докажите, что если p и q – два простых числа, причём  q = p + 2,  то  pq + qp  делится на  p + q.

Прислать комментарий     Решение

Задача 78669

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 8,9

На плоскости отмечено 1968 точек, являющихся вершинами правильного 1968-угольника. Двое играют в следующую игру: каждый по очереди соединяет две вершины многоугольника отрезком, соблюдая следующие правила: нельзя соединять две точки, хотя бы одна из которых уже соединена с чем-то, и нельзя пересекать уже проведённые отрезки. Проигрывает тот, кто не может сделать очередного хода согласно этим правилам. Как нужно играть, чтобы выиграть? Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 78679

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

На плоскости нарисован правильный многоугольник A1A2A3A4A5. Можно ли выбрать в плоскости множество точек, обладающее следующим свойством: через любую точку, не лежащую внутри пятиугольника, можно провести отрезок, концы которого являются точками нашего множества, а через точки, лежащие внутри пятиугольника, такого отрезка провести нельзя.

Примечание.
1. Отрезок проходит через любую свою точку, в частности, через свой конец.
2. "Внутри" — значит строго внутри.
Прислать комментарий     Решение


Задача 78650

Темы:   [ Деление с остатком ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 8,9,10

Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
Перечислить все числа, обладающие этим свойством.

Прислать комментарий     Решение

Задача 78652

Темы:   [ НОД и НОК. Взаимная простота ]
[ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Доказать, что для любых трёх чисел, меньших 1000000, найдётся число, меньшее 100 (но большее 1), взаимно простое с каждым из них.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .