ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В окружность радиуса R вписан многоугольник площади S, содержащий центр окружности, и на его сторонах выбрано по точке. Докажите, что периметр выпуклого многоугольника с вершинами в выбранных точках не меньше 2S/R.

Вниз   Решение


Играют двое. В начале игры есть одна палочка. Первый игрок ломает эту палочку на две части. И так игроки по очереди ломают на две части любую палочку из имеющихся к данному моменту. Если, сломав палочку, игрок может сложить из всех имеющихся палочек один или несколько отдельных треугольников (каждый – ровно из трёх палочек), то он выиграл. Кто из игроков (первый или второй) может обеспечить себе победу независимо от действий другого игрока?

ВверхВниз   Решение


Имеется 11 мешков с монетами и весы с двумя чашками и стрелкой, которые показывают, на какой чашке груз тяжелее и на сколько именно. Известно, что в одном мешке все монеты фальшивые, а в остальных – все монеты настоящие. Все настоящие монеты имеют одинаковый вес, а все фальшивые – также одинаковый, но другой вес. За какое наименьшее число взвешиваний можно определить, в каком мешке лежат фальшивые монеты?

ВверхВниз   Решение


В строчку написано 37 чисел так, что сумма каждых шести подряд идущих чисел равна 29. Первое число 5. Каким может быть последнее число?

ВверхВниз   Решение


Доказать: число делителей n не превосходит 2.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78204  (#1)

Темы:   [ Перебор случаев ]
[ Раскладки и разбиения ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 8,9

Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)

Прислать комментарий     Решение

Задача 78205  (#2)

Тема:   [ Три окружности одного радиуса ]
Сложность: 3
Классы: 8,9,10

3 равные окружности с центрами O1, O2, O3 пересекаются в данной точке. A1, A2, A3 — остальные точки пересечения. Доказать, что треугольники O1O2O3 и A1A2A3 равны.
Прислать комментарий     Решение


Задача 78206  (#3)

Темы:   [ Принцип Дирихле (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?

Прислать комментарий     Решение

Задача 78207  (#4)

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 4-
Классы: 8,9

M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке.
Прислать комментарий     Решение


Задача 78208  (#5)

Темы:   [ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 7,8,9,10

Доказать: число делителей n не превосходит 2.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .