|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами. В углах шахматной доски 3 на 3 стоят кони: в верхних углах — белые, в нижних — чёрные. Доказать, что для того, чтобы им поменяться местами, потребуется не менее 16 ходов. (Кони не обязательно ходят сначала белый, потом чёрный. Ходом считается ход одного коня.) Дана невозрастающая последовательность чисел
1/2k = a1 ≥ a2 ≥ ... ≥ an ≥ ... > 0, a1 + a2 + ... + an + ... = 1. Пусть α – корень уравнения x² + px + q = 0, а β – уравнения x² – px – q = 0. Докажите, что между α и β лежит корень уравнения x² – 2px – 2q = 0. n отрезков длины 1 пересекаются в одной точке. Доказать, что хотя бы одна сторона 2n-угольника, образованного их концами, не меньше стороны правильного 2n-угольника, вписанного в окружность диаметра 1. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Дана невозрастающая последовательность чисел
1/2k = a1 ≥ a2 ≥ ... ≥ an ≥ ... > 0, a1 + a2 + ... + an + ... = 1.
Даны сто чисел x1, x2,..., x100, сумма которых равна 1. При этом абсолютные величины разностей xk+1 – xk меньше 1/50 каждая.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|