ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Докажите, что этот многоугольник правильный.

Вниз   Решение


В углах шахматной доски 3 на 3 стоят кони: в верхних углах — белые, в нижних — чёрные. Доказать, что для того, чтобы им поменяться местами, потребуется не менее 16 ходов. (Кони не обязательно ходят сначала белый, потом чёрный. Ходом считается ход одного коня.)

ВверхВниз   Решение


Дана невозрастающая последовательность чисел   1/2k = a1a2 ≥ ... ≥ an ≥ ... > 0,  a1 + a2 + ... + an + ... = 1.
Доказать, что найдутся k чисел, из которых самое маленькое больше половины самого большого.

ВверхВниз   Решение


Пусть α – корень уравнения  x² + px + q = 0,  а β – уравнения  x² – pxq = 0.  Докажите, что между α и β лежит корень уравнения  x² – 2px – 2q = 0.

ВверхВниз   Решение


n отрезков длины 1 пересекаются в одной точке. Доказать, что хотя бы одна сторона 2n-угольника, образованного их концами, не меньше стороны правильного 2n-угольника, вписанного в окружность диаметра 1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 78188

Темы:   [ Десятичная система счисления ]
[ Ребусы ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 4
Классы: 7,8,9

На какое целое число надо умножить 999 999 999, чтобы получить число, состоящее из одних единиц?
Прислать комментарий     Решение


Задача 78185

Темы:   [ Линейные неравенства и системы неравенств ]
[ Геометрическая прогрессия ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10

Дана невозрастающая последовательность чисел   1/2k = a1a2 ≥ ... ≥ an ≥ ... > 0,  a1 + a2 + ... + an + ... = 1.
Доказать, что найдутся k чисел, из которых самое маленькое больше половины самого большого.

Прислать комментарий     Решение

Задача 78195

Тема:   [ Алгебраические неравенства и системы неравенств ]
Сложность: 4
Классы: 10,11

Даны сто чисел x1, x2,..., x100, сумма которых равна 1. При этом абсолютные величины разностей  xk+1xk  меньше 1/50 каждая.
Доказать, что из них можно выбрать 50 чисел так, чтобы сумма выбранных отличалась от половины не больше, чем на одну сотую.

Прислать комментарий     Решение

Задача 78196

Тема:   [ Многоугольники (неравенства) ]
Сложность: 4
Классы: 10,11

n отрезков длины 1 пересекаются в одной точке. Доказать, что хотя бы одна сторона 2n-угольника, образованного их концами, не меньше стороны правильного 2n-угольника, вписанного в окружность диаметра 1.
Прислать комментарий     Решение


Задача 78199

Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 10,11

В углах шахматной доски 3 на 3 стоят кони: в верхних углах — белые, в нижних — чёрные. Доказать, что для того, чтобы им поменяться местами, потребуется не менее 16 ходов. (Кони не обязательно ходят сначала белый, потом чёрный. Ходом считается ход одного коня.)
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .