|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Источники:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что последние цифры чисел nn (n – натуральное) образуют периодическую последовательность. Дополнить алгоритм предыдущей задачи поиском x и y, для которых ax + by = НОД(a,b). Ньют хочет перевезти девять фантастических тварей весом 2, 3, 4, 5, 6, 7, 8, 9 и 10 кг в трёх чемоданах, по три твари в каждом. Каждый чемодан должен весить меньше 20 кг. Если вес какой-нибудь твари будет делиться на вес другой твари из того же чемодана, они подерутся. Как Ньюту распределить тварей по чемоданам, чтобы никто не подрался? Танины часы отстают за каждый час на 5 минут. В полдень к Тане придут гости. Сейчас 6 часов утра. На какое время ей надо поставить стрелки часов, чтобы в полдень часы показывали правильное время? По кругу расставлены 10 железных гирек. Между каждыми соседними гирьками находится бронзовый шарик. Масса каждого шарика равна разности масс соседних с ним гирек. Докажите, что шарики можно разложить на две чаши весов так, чтобы весы уравновесились. Составить программу решения предыдущей задачи, использующую тот факт, что составное число имеет делитель, не превосходящий квадратного корня из этого числа. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 272]
X [p+1]< X [p+2]>X [p+3]<...> X[p+k].
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 272] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|