ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 272]      



Задача 76209

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ НОД и НОК. Алгоритм Евклида ]
Сложность: 2-

Даны два натуральных числа a и b, не равные нулю одновременно. Вычислить НОД(a,b) — наибольший общий делитель а и b.
Прислать комментарий     Решение


Задача 76210

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ НОД и НОК. Алгоритм Евклида ]
Сложность: 2-

Написать модифицированный вариант алгоритма Евклида, использующий соотношения НОД(a,b) = НОД(a mod b, b) при a≥b, НОД(a,b) = НОД(a, b mod a) при b≥a.
Прислать комментарий     Решение


Задача 76219

Темы:   [ Знакомство с циклами ]
[ Условный оператор ]
[ Задачи с целыми числами ]
Сложность: 2-

Составить программу решения предыдущей задачи, использующую тот факт, что составное число имеет делитель, не превосходящий квадратного корня из этого числа.
Прислать комментарий     Решение


Задача 98739

 [Различные числа]
Тема:   [ Одномерные массивы ]
Сложность: 2-

Задан числовой массив А [1:m]. Сосчитать и напечатать, сколько различных чисел в этом массиве. Например, в массиве 5, 7, 5 различных чисел два (5 и 7).
Прислать комментарий     Решение


Задача 98758

 [Пила]
Тема:   [ Одномерные массивы ]
Сложность: 2-

Задан массив X [1:m]. Найти длину k самой длинной ''пилообразной (зубьями вверх)'' последовательности идущих подряд чисел:

X [p+1]< X [p+2]>X [p+3]<...> X[p+k].

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 272]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .