ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На плоскости дано несколько правильных n-угольников. Докажите, что выпуклая оболочка их вершин имеет не менее n углов.

Вниз   Решение


Внутри треугольника ABC взята точка P так, что  ∠ABP = ∠ACP,  а  ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC.

ВверхВниз   Решение


Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?

ВверхВниз   Решение


Дано число 123456789101112131415...99100. Вычеркнуть 100 цифр так, чтобы оставшееся число было наибольшим.

ВверхВниз   Решение


Даны два натуральных числа a и b, не равные нулю одновременно. Вычислить НОД(a,b) — наибольший общий делитель а и b.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 78]      



Задача 76209

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ НОД и НОК. Алгоритм Евклида ]
Сложность: 2-

Даны два натуральных числа a и b, не равные нулю одновременно. Вычислить НОД(a,b) — наибольший общий делитель а и b.
Прислать комментарий     Решение


Задача 76210

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ НОД и НОК. Алгоритм Евклида ]
Сложность: 2-

Написать модифицированный вариант алгоритма Евклида, использующий соотношения НОД(a,b) = НОД(a mod b, b) при a≥b, НОД(a,b) = НОД(a, b mod a) при b≥a.
Прислать комментарий     Решение


Задача 76219

Темы:   [ Знакомство с циклами ]
[ Условный оператор ]
[ Задачи с целыми числами ]
Сложность: 2-

Составить программу решения предыдущей задачи, использующую тот факт, что составное число имеет делитель, не превосходящий квадратного корня из этого числа.
Прислать комментарий     Решение


Задача 76240

Тема:   [ Многомерные массивы ]
Сложность: 2-

(Сообщил А. Л.Брудно) Прямоугольное поле m×n разбито на mn квадратных клеток. Некоторые клетки покрашены в чёрный цвет. Известно, что все чёрные клетки могут быть разбиты на несколько непересекающихся и не имеющих общих вершин чёрных прямоугольников. Считая, что цвета клеток даны в виде массива типа

array[1..m] of array [ 1..n] of boolean;
подсчитать число чёрных прямоугольников, о которых шла речь. Число действий должно быть порядка mn.
Прислать комментарий     Решение

Задача 76203

Тема:   [ Знакомство с циклами ]
Сложность: 2

Дано натуральное (целое неотрицательное) число а и целое положительное число d. Вычислить частное q и остаток r при делении а на d, не используя операций div и mod.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .