Версия для печати
Убрать все задачи
Можно ли квадрат разрезать на 9 квадратов и раскрасить их так, чтобы получились 1 белый, 3 серых и 5 чёрных квадратов, причём одноцветные квадраты были бы равны, а разноцветные квадраты – не равны?

Решение
На прямоугольном листе клетчатой бумаги размером
m×
n клеток расположено несколько квадратов, стороны которых идут по вертикальным и горизонтальным линиям бумаги. Известно, что никакие два квадрата не совпадают и никакой квадрат не содержит внутри себя другой квадрат. Каково наибольшее число таких квадратов?


Решение
Может ли разность четвёртых степеней простых чисел быть простым числом?


Решение
Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.

Решение