Версия для печати
Убрать все задачи
Верно ли утверждение: "Если две стороны и три угла одного треугольника равны двум сторонам и трём углам другого треугольника, то такие треугольники равны"?

Решение
На плоскости даны точки $A$, $B$, $C$ и $D$ общего положения и проходящая через $B$ и $C$ окружность $\omega$. Точка $P$ движется по $\omega$. Обозначим через $Q$ точку пересечения описанных окружностей треугольников $ABP$ и $PCD$, отличную от $P$. Найдите геометрическое место точек $Q$.


Решение
Четырехугольник $ABCD$ вписан в окружность. По дуге $AD$, не содержащей точек $B$ и $C$, движется точка $P$. Фиксированная прямая $l$, перпендикулярная прямой $BC$, пересекает лучи $BP$, $CP$ в точках $B_0$, $C_0$ соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника $PB_0C_0$ в точке $P$, проходит через фиксированную точку.


Решение
В треугольнике $ABC$ вневписанная окружность, лежащая напротив угла $C$, касается стороны $AB$ в точке $T$. Пусть $J$ – центр вневписанной окружности, лежащей напротив угла $A$, a $M$ – середина $AJ$. Докажите, что $MT=MC$.

Решение