|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Через P(x) обозначается произведение всех цифр натурального числа x, через S(x) – сумма цифр числа x. Все клетки верхнего ряда квадрата 14× 14 заполнены водой, а в одной клетке лежит мешок с песком (см. рис.). За один ход Вася может положить мешки с песком в любые 3 не занятые водой клетки, после чего вода заполняет каждую из тех клеток, которые граничат с водой (по стороне), если в этой клетке нет мешка с песком. Ходы продолжаются, пока вода может заполнять новые клетки. Как действовать Васе, чтобы в итоге вода заполнила как можно меньше клеток? Рейс 608 "Аэрофлота" вылетает из Москвы в 12:00, а прилетает в Бишкек в 18:00 (по местному времени). Обратный рейс 607 вылетает в 8:00, а прилетает в 10:00. Сколько времени длится полет? Существуют ли такие 2018 положительных несократимых дробей с различными натуральными знаменателями, что знаменатель разности каждых двух из них (после приведения к несократимому виду) меньше знаменателя любой из исходных 2018 дробей? |
Страница: 1 2 >> [Всего задач: 7]
В строку выписаны 39 чисел, не равных нулю. Сумма каждых двух соседних чисел положительна, а сумма всех чисел отрицательна.
У Аладдина есть несколько одинаковых слитков золота, и иногда он просит джинна увеличить их количество. Джинн добавляет тысячу таких же слитков, но после этого берёт за услугу ровно половину от получившейся общей массы золота. Мог ли Аладдин оказаться в выигрыше после десяти таких просьб, если ни один слиток не пришлось распиливать?
Существуют ли такие 2018 положительных несократимых дробей с различными натуральными знаменателями, что знаменатель разности каждых двух из них (после приведения к несократимому виду) меньше знаменателя любой из исходных 2018 дробей?
На улице дома стоят друг напротив друга, всего 50 пар. На правой стороне улицы расположены дома с чётными натуральными номерами, на левой – с нечётными натуральными номерами, номера возрастают от начала улицы к концу на каждой стороне, но идут не обязательно подряд (возможны пропуски). Для каждого дома на правой стороне улицы нашли разность между его номером и номером дома напротив, и оказалось, что все найденные числа различны. Наибольший номер дома на улице равен $n$. Найдите наименьшее возможное значение $n$.
Страница: 1 2 >> [Всего задач: 7] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|