ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Олег собрал мешочек монет. Саша пересчитал их, и оказалось, что если разделить все монеты на пять равных кучек, то останется две лишние монеты. А если на четыре равные кучки – останется одна лишняя монета. В то же время монетки можно разделить на три равные кучки. Какое наименьшее число монет могло быть у Олега?

Вниз   Решение


Докажите неравенство     для положительных значений переменных.

ВверхВниз   Решение


В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.

ВверхВниз   Решение


Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?

ВверхВниз   Решение


Докажите, что для любых различных натуральных чисел $m$ и $n$ справедливо неравенство $|\sqrt[n]{m}-\sqrt[m]{n}|>\frac{1}{mn}$.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 66609  (#1)

Темы:   [ Дроби (прочее) ]
[ Многочлены (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$
Прислать комментарий     Решение


Задача 66610  (#2)

Темы:   [ Признаки делимости (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 9,10,11

На экране компьютера напечатано натуральное число, делящееся на 7, а курсор находится в промежутке между некоторыми двумя его соседними цифрами. Докажите, что существует такая цифра, что, если ее впечатать в этот промежуток любое число раз, то все получившиеся числа также будут делиться на 7. Например, все числа 259, 2569, 25669, 256669, ..., а также 2359, 23359, 233359, ... делятся на 7.
Прислать комментарий     Решение


Задача 66536  (#3)

Темы:   [ Вписанные и описанные окружности ]
[ Треугольники (прочее) ]
[ Планиметрия (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

В остроугольном треугольнике ABC проведены высоты AA' и BB'. Точка O – центр окружности, описанной около треугольника ABC. Докажите, что расстояние от точки A' до прямой B' равно расстоянию от точки B' до прямой A'.
Прислать комментарий     Решение


Задача 66611  (#4)

Темы:   [ Корни. Степень с рациональным показателем (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 9,10,11

Докажите, что для любых различных натуральных чисел $m$ и $n$ справедливо неравенство $|\sqrt[n]{m}-\sqrt[m]{n}|>\frac{1}{mn}$.
Прислать комментарий     Решение


Задача 66612  (#5)

Темы:   [ Площадь и ортогональная проекция ]
[ Достроение тетраэдра до параллелепипеда ]
[ Тетраэдр и пирамида (прочее) ]
Сложность: 5
Классы: 9,10,11

Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .