ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На улице n домов. Каждый день почтальон идёт на почту, берёт там письма для жителей одного дома и разносит их. Затем он возвращается на почту, берёт письма для жителей другого дома и снова их разносит. И так он обходит все дома. В каком месте нужно построить почту, чтобы почтальону пришлось проходить наименьшее расстояние? Улицу можно считать отрезком прямой.
  а) Решите задачу для  n = 5.
  б) Решите задачу для  n = 6.
  в) Решите задачу для произвольного n.

Вниз   Решение


Точка O является точкой пересечения высот остроугольного треугольника ABC. Докажите, что 3 окружности, проходящие: первая через точки O, A, B, вторая — через точки O, B, C и третья — через точки O, C, A, равны между собой.

ВверхВниз   Решение


В компании из 10 человек произошло 14 попарных ссор. Докажите, что все равно можно составить компанию из трёх друзей.

ВверхВниз   Решение


Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 66529  (#1)

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Все таверны в царстве принадлежат трем фирмам. В целях борьбы с монополиями царь Горох издал следующий указ: каждый день, если у некоторой фирмы оказывается более половины всех таверн и число её таверн делится на 5, то у этой фирмы остается только пятая часть её таверн, а остальные закрываются. Могло ли так случиться, что через три дня у всех фирм стало меньше таверн? (Новые таверны в это время открываться не могут.)
Прислать комментарий     Решение


Задача 66535  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9,10

Король вызвал двух мудрецов и объявил им задание: первый задумывает 7 различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу называет лишь четвертое по величине из этих чисел, после чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться. Могут ли мудрецы гарантированно справиться с заданием?
Прислать комментарий     Решение


Задача 66605  (#1)

Темы:   [ Теория чисел. Делимость ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.
Прислать комментарий     Решение


Задача 66609  (#1)

Темы:   [ Дроби (прочее) ]
[ Многочлены (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$
Прислать комментарий     Решение


Задача 66613  (#1)

Темы:   [ Показательные неравенства ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 4
Классы: 10,11

Пользуясь равенством $\lg11=1{,}0413\ldots$, найдите наименьшее число $n>1$, для которого среди $n$-значных чисел нет ни одного, равного некоторой натуральной степени числа 11.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .