ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дана правильная треугольная пирамида SABC, ребро основания которой равно 1. Из вершин A и B основания ABC проведены медианы боковых граней, не имеющие общих точек. Известно, что на прямых, содержащих эти медианы, лежат рёбра некоторого куба. Найдите длину бокового ребра пирамиды.

Вниз   Решение


На доске записано натуральное число. Если у него стереть последнюю цифру (в разряде единиц), то останется ненулевое число, которое будет делиться на 20, а если первую — то на 21. Какое наименьшее число может быть записано на доске, если его вторая цифра не равна 0?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 66579  (#1)

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Барон Мюнхгаузен утверждает, что к любому двузначному числу можно справа приписать еще две цифры так, чтобы получился полный квадрат (к примеру, если задано число $10$, то дописываем $24$ и получаем $1024 = 32^2$). Прав ли барон?
Прислать комментарий     Решение


Задача 66585  (#1)

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 9,10,11

Положительные числа $a$ и $b$ таковы, что $a - b = a / b$. Что больше, $a + b$ или $a b$?
Прислать комментарий     Решение


Задача 66591  (#1)

Темы:   [ Делимость чисел. Общие свойства ]
[ Признаки делимости ]
Сложность: 3
Классы: 7,8,9,10,11

На доске записано натуральное число. Если у него стереть последнюю цифру (в разряде единиц), то останется ненулевое число, которое будет делиться на 20, а если первую — то на 21. Какое наименьшее число может быть записано на доске, если его вторая цифра не равна 0?
Прислать комментарий     Решение


Задача 66591  (#1)

Темы:   [ Делимость чисел. Общие свойства ]
[ Признаки делимости ]
Сложность: 3
Классы: 7,8,9,10,11

На доске записано натуральное число. Если у него стереть последнюю цифру (в разряде единиц), то останется ненулевое число, которое будет делиться на 20, а если первую — то на 21. Какое наименьшее число может быть записано на доске, если его вторая цифра не равна 0?
Прислать комментарий     Решение


Задача 66600  (#1)

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .