Версия для печати
Убрать все задачи
Основание равнобедренного треугольника составляет четверть его периметра. Из произвольной точки основания проведены прямые, параллельные боковым сторонам. Во сколько раз периметр треугольника больше периметра отсечённого параллелограмма?

Решение
Докажите, что из точки
A, лежащей вне окружности,
можно провести ровно две касательные к окружности, причем
длины этих касательных (т. е. расстояния от
A до точек
касания) равны.


Решение
Даны два набора векторов
a1,...,
an и
b1,...,
bm, причем сумма длин проекций векторов
первого набора на любую прямую не больше суммы длин проекций векторов
второго набора на ту же прямую. Докажите, что сумма
длин векторов первого набора не больше суммы длин
векторов второго набора.


Решение
Продолжения сторон
AB и
CD вписанного
четырехугольника
ABCD пересекаются в точке
P, а продолжения
сторон
BC и
AD — в точке
Q. Докажите, что точки пересечения
биссектрис углов
AQB и
BPC со сторонами четырехугольника
являются вершинами ромба.


Решение
Приведите пример такого квадратного трехчлена $P(x)$, что при любом $x$ справедливо равенство
$P(x)+P(x+1)+\dots + P(x+10)=x^2$.

Решение