|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть f(x) = x² + 12x + 30. Решите уравнение f(f(f(f(f(x))))) = 0. Указать индуктивные расширения для следующих функций: (а) среднее арифметическое последовательности вещественных чисел; (б) число элементов последовательности целых чисел, равных её максимальному элементу; (в) второй по величине элемент последовательности целых чисел (тот, который будет вторым, если переставить члены в неубывающем порядке); (г) максимальное число идущих подряд одинаковых элементов; (д) максимальная длина монотонного (неубывающего или невозрастающего) участка из идущих подряд элементов в последовательности целых чисел; (е) число групп из единиц, разделённых нулями (в последовательности нулей и единиц). AB — диаметр окружности, BC — касательная. Секущая AC делится окружностью в точке D пополам. Найдите угол DAB.
Глеб задумал натуральные числа $N$ и $a$, $a < N$. Число $a$ он написал на доске. Затем он начал выполнять следующую операцию: делить $N$ с остатком на последнее выписанное на доску число, а полученный остаток от деления также записывать на доску. Когда на доске появилось число $0$, он остановился. Мог ли Глеб изначально выбрать такие $N$ и $a$, чтобы сумма выписанных чисел была больше $100 N$? |
Страница: << 1 2 3 4 5 6 [Всего задач: 29]
Страница: << 1 2 3 4 5 6 [Всего задач: 29] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|