|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В углу шахматной доски размером m×n полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть? Дана функция f(x), значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен Qp(x) степени, не превышающей 2013, с целыми коэффициентами, что f(n) – Qp(n) делится на p при любом целом n. Верно ли, что существует такой многочлен g(x) с вещественными коэффициентами , что g(n) = f(n) для любого целого n? По двум телевизионным каналам одновременно начали показывать один и тот же фильм. На первом канале фильм разбили на части по 20 минут каждая и вставили между ними двухминутные рекламные паузы. А на втором канале фильм разбили на части по 10 минут каждая и вставили между ними минутные рекламные паузы. На каком канале фильм закончится раньше? На шахматную доску поставлены 11 коней так, что никакие два не бьют друг друга. В ряд стоят 100 детей разного роста. Разрешается выбрать любых 50 детей, стоящих подряд, и переставить их между собой как угодно (остальные остаются на своих местах). Как всего за шесть таких перестановок гарантированно построить всех детей по убыванию роста слева направо? |
Страница: 1 [Всего задач: 5]
Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017.
Докажите, что на графике любого квадратного трёхчлена со старшим коэффициентом 1, имеющего ровно один корень, найдётся такая точка (p, q), что трёхчлен x² + px + q также имеет ровно один корень.
Из вершины A остроугольного треугольника ABC по биссектрисе угла A выпустили бильярдный шарик, который отразился от стороны BC по закону "угол падения равен углу отражения" и дальше катился по прямой, уже ни от чего не отражаясь. Докажите, что если ∠A = 60°, то траектория шарика проходит через центр описанной окружности треугольника ABC.
В ряд стоят 100 детей разного роста. Разрешается выбрать любых 50 детей, стоящих подряд, и переставить их между собой как угодно (остальные остаются на своих местах). Как всего за шесть таких перестановок гарантированно построить всех детей по убыванию роста слева направо?
а) На каждой стороне десятиугольника (не обязательно выпуклого) как на диаметре построили окружность. Может ли оказаться, что все эти окружности имеют общую точку, не совпадающую ни с одной вершиной десятиугольника?
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|