ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.

Вниз   Решение


Найдите  cos 36°  и  cos 72°.

ВверхВниз   Решение


Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.

ВверхВниз   Решение


На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 64847  (#1)

Темы:   [ Вписанные и описанные многоугольники ]
[ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3+
Классы: 8,9

Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.

Прислать комментарий     Решение

Задача 64849  (#2)

Темы:   [ Перестановки и подстановки (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту.

Прислать комментарий     Решение

Задача 64853  (#3)

Темы:   [ Произведения и факториалы ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 4-
Классы: 9,10,11

Гриша записал на доске 100 чисел. Затем он увеличил каждое число на 1 и заметил, что произведение всех 100 чисел не изменилось. Он опять увеличил каждое число на 1, и снова произведение всех чисел не изменилось, и так далее. Всего Гриша повторил эту процедуру k раз, и все k раз произведение чисел не менялось. Найдите наибольшее возможное значение k.

Прислать комментарий     Решение

Задача 64854  (#4)

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 9,10

Вписанная окружность треугольника ABC касается сторон BC, CA, ABв точках A', B', C' соответственно. Прямые AA', BB' и CC' пересекаются в точке G. Описанная окружность треугольника GA'B', вторично пересекает прямые AC и BC в точках CA и CB. Аналогично определяются точки AB, AC, BC, BA. Докажите, что точки AB, AC, BC, BA, CA, CB лежат на одной окружности.

Прислать комментарий     Решение

Задача 64855  (#5)

Темы:   [ Мощность множества. Взаимно-однозначные отображения ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 7,8,9,10,11

Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .