ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

Вниз   Решение


Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?

ВверхВниз   Решение


В кошельке лежат 2 монеты на общую сумму 15 коп. Одна из них не пятак. Что это за монеты?

ВверхВниз   Решение


Натуральное число называют совершенным, если оно равно сумме всех своих делителей, кроме самого этого числа. (Например, число 28 – совершенное:  28 = 1 + 2 + 4 + 7 + 14.)  Докажите, что совершенное число не может быть полным квадратом.

ВверхВниз   Решение


Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

ВверхВниз   Решение


Сколькими способами можно разбить 14 человек на пары?

ВверхВниз   Решение


Автор: Дидин М.

При каком наименьшем $k$ среди любых трёх ненулевых действительных чисел можно выбрать такие два числа $a$ и $b$, что  |$a - b$| ≤ $k$  или  |1/a1/b| ≤ $k$?

ВверхВниз   Решение


В квадрат вписано 1993 различных правильных треугольника (треугольник вписан, если три его вершины лежат на сторонах квадрата).
Докажите, что внутри квадрата можно указать точку, лежащую на границе не менее чем 499 из этих треугольников.

ВверхВниз   Решение


На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые.
Сколько прямоугольников из этих девяти могут иметь нечётную площадь?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 64300  (#6.1)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 6,7

У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать).

Прислать комментарий     Решение

Задача 64301  (#6.2)

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 6,7

Автор: Шноль Д.Э.

Папа, Маша и Яша вместе идут в школу. Пока папа делает 3 шага, Маша делает 5 шагов. Пока Маша делает 3 шага, Яша делает 5 шагов. Маша и Яша посчитали, что вместе они сделали 400 шагов. Сколько шагов сделал папа?

Прислать комментарий     Решение

Задача 64302  (#6.3)

Темы:   [ Площадь параллелограмма ]
[ Четность и нечетность ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7

На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые.
Сколько прямоугольников из этих девяти могут иметь нечётную площадь?

Прислать комментарий     Решение

Задача 64303  (#6.4)

Темы:   [ Куб ]
[ Развертка помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Автор: Шноль Д.Э.

Дан куб с ребром 2. Покажите, как наклеить на него без наложений 10 квадратов со стороной 1 так, чтобы никакие квадраты не граничили по отрезку (по стороне или её части). Перегибать квадраты нельзя.

Прислать комментарий     Решение

Задача 64304  (#6.5)

Темы:   [ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 6,7

  Одноклассники Аня, Боря и Вася живут на одной лестничной клетке. В школу они идут с постоянными, но различными скоростями, не оглядываясь и не дожидаясь друг друга. Но если кто-то из них успевает догнать другого, то дальше он замедляется, чтобы идти вместе с тем, кого догнал.
  Однажды первой вышла Аня, вторым Боря, третьим Вася, и какие-то двое из них пришли в школу вместе. На следующий день первым вышел Вася, вторым Боря, третьей Аня. Могут ли все трое прийти в школу вместе?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .