ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать).

Вниз   Решение


Федя из трёх равных треугольников составил несколько различных фигур (одна из них изображена на рисунке слева). Затем из всех имеющихся фигур он сложил "стрелку" так, как показано на рисунке справа. Нарисуйте отдельно каждую из Фединых фигур и покажите, как из них можно сложить "стрелку".

ВверхВниз   Решение


Про треугольник, один из углов которого равен 120°, известно, что его можно разрезать на два равнобедренных треугольника.
Чему могут быть равны два других угла исходного треугольника?

Вверх   Решение

Задача 64300
Тема:    [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 6,7
Из корзины
Прислать комментарий

Условие

У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать).


Решение

Это можно сделать несколькими способами – см. рис.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада для 6-7 классов
год/номер
Номер 8 (2010 год)
Дата 2010-02-28
класс
1
Класс 6 класс
задача
Номер 6.1
олимпиада
Название Московская устная олимпиада для 6-7 классов
год/номер
Номер 8 (2010 год)
Дата 2010-02-28
класс
Класс 7 класс
задача
Номер 7.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .