|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело. Докажите, что если x > 0, y > 0, z > 0 и x² + y² + z² = 1, то На плоскости расположено n точек, причем площадь любого треугольника с вершинами в этих точках не превосходит 1. Докажите, что все эти точки можно поместить в треугольник площади 4. Докажите, что при нечетном m выражение (x + y + z)m – xm – ym – zm делится на (x + y + z)3 – x3 – y3 – z3. |
Страница: 1 2 3 >> [Всего задач: 13]
Разложите на множители с действительными коэффициентами многочлены:
Можно ли разложить на множители с целыми коэффициентами многочлен x4 + x3 + x2 + x + 12?
Докажите, что многочлен x4 + px2 + q всегда можно разложить в произведение двух многочленов второй степени.
Упростите выражение:
Докажите, что при нечетном m выражение (x + y + z)m – xm – ym – zm делится на (x + y + z)3 – x3 – y3 – z3.
Страница: 1 2 3 >> [Всего задач: 13] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|