|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Найдите все пары простых чисел p и q, обладающие следующим свойством: 7p + 1 делится на q, а 7q + 1 делится на p. Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей. В треугольнике ABC точка I – центр вписанной окружности, точки IA, IC – центры вневписанных окружностей, касающихся сторон BC и AB соответственно. Точка O – центр описанной окружности треугольника IIAIC. Докажите, что OI ⊥ AC. При каких a уравнения x2 + ax + 1 = 0 и x2 + x + a = 0 имеют хотя бы один общий корень? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 141]
Рассмотрим графики функций y = x² + px + q, которые пересекают оси координат в трёх различных точках.
Известно, что уравнение x² + 5bx + c = 0 имеет корни x1 и x2, x1 ≠ x2, а некоторое число является корнем уравнения y² + 2x1y + 2x2 = 0 и корнем уравнения z² + 2x2z + 2x1 = 0. Найти b.
Известно, что квадратные уравнения ax² + bx + c = 0 и bx² + cx + a = 0 (a, b и c – отличные от нуля числа) имеют общий корень.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 141] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|