|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Отец с двумя сыновьями отправились навестить бабушку, которая живёт в 33 км от города. У отца есть мотороллер, скорость которого 25 км/ч, а с пассажиром – 20 км/ч (двух пассажиров на мотороллере перевозить нельзя). Каждый из братьев идёт по дороге со скоростью 5 км/ч. Докажите, что все трое могут добраться до бабушки за 3 часа. В задаче 60274 доказана возможность деления с остатком произвольного целого числа a на натуральное число b. В некоторых клетках шахматной доски стоят фигуры. Известно, что на каждой горизонтали стоит хотя бы одна фигура, причём в разных горизонталях – разное число фигур. Докажите, что всегда можно отметить 8 фигур так, чтобы в каждой вертикали и каждой горизонтали стояла ровно одна отмеченная фигура. Натуральные числа p и q взаимно просты. Отрезок [0, 1] разбит на p + q одинаковых отрезков. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 173]
Докажите, что если в наборе целых чисел a1, ..., an хотя бы одно отлично от 0, то они имеют наибольший общий делитель.
В прямоугольнике с целыми сторонами m и n, нарисованном на клетчатой бумаге, проведена диагональ.
Натуральные числа p и q взаимно просты. Отрезок [0, 1] разбит на p + q одинаковых отрезков.
С 1 сентября четыре школьника начали посещать кинотеатр. Первый бывал в нём каждый четвёртый день, второй – каждый пятый, третий – каждый шестой и четвёртый – каждый девятый. Когда второй раз все школьники встретятся в кинотеатре?
В задаче 60274 доказана возможность деления с остатком произвольного целого числа a на натуральное число b.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 173] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|