ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Ваня задумал простое трёхзначное число, все цифры которого различны.
На какую цифру оно может оканчиваться, если его последняя цифра равна сумме первых двух?

Вниз   Решение


Докажите равенство  

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



Задача 60414  (#02.080)

 [Свойство шестиугольника]
Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Сочетания и размещения ]
Сложность: 3+
Классы: 8,9,10

Докажите равенство  

Прислать комментарий     Решение

Задача 60415  (#02.081)

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3+
Классы: 8,9,10

120 одинаковых шаров плотно уложены в виде правильной треугольной пирамиды. Сколько шаров лежит в основании?

Прислать комментарий     Решение

Задача 60416  (#02.082)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Системы алгебраических нелинейных уравнений ]
Сложность: 3
Классы: 8,9,10

В разложении  (x + y)n  по формуле бинома Ньютона второй член оказался равен 240, третий – 720, а четвёртый – 1080. Найдите x, y и n.

Прислать комментарий     Решение

Задача 60417  (#02.083)

 [Биномиальная система счисления]
Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Системы счисления (прочее) ]
Сложность: 3+
Классы: 9,10

Покажите, что любое натуральное число n может быть представлено в виде     где x, y, z – такие целые числа, что  0 ≤ x < y < z,  либо  0 = x = y < z.

Прислать комментарий     Решение

Задача 60418  (#02.084)

Темы:   [ Теория графов (прочее) ]
[ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10,11

В компании из 10 человек произошло 14 попарных ссор. Докажите, что все равно можно составить компанию из трёх друзей.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .