ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Сумма трёх положительных чисел равна их произведению. Докажите, что хотя бы два из них больше единицы.

Вниз   Решение


В некотором лесу расстояние между каждыми двумя деревьями не превосходит разности их высот. Все деревья имеют высоту меньше 100 м.
Докажите, что этот лес можно огородить забором длиной 200 м.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Одуванчик утром распускается, два дня цветёт жёлтым, на третий день утром становится белым, а к вечеру облетает. Вчера днем на поляне было 20 жёлтых и 14 белых одуванчиков, а сегодня 15 жёлтых и 11 белых.
  а) Сколько жёлтых одуванчиков было на поляне позавчера?
  б) Сколько белых одуванчиков будет на поляне завтра?

ВверхВниз   Решение


Докажите, что композиция двух гомотетий с коэффициентами k1 и k2, где k1k2$ \ne$1, является гомотетией с коэффициентом k1k2, причем ее центр лежит на прямой, соединяющей центры этих гомотетий. Исследуйте случай k1k2 = 1.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 58001

Тема:   [ Композиции гомотетий ]
Сложность: 3
Классы: 9

Преобразование f обладает следующим свойством: если A' и B' — образы точек A и B, то $ \overrightarrow{A'B'}$ = k$ \overrightarrow{AB}$, где k — постоянное число. Докажите, что:
а) если k = 1, то преобразование f является параллельным переносом;
б) если k$ \ne$1, то преобразование f является гомотетией.
Прислать комментарий     Решение


Задача 58002

Тема:   [ Композиции гомотетий ]
Сложность: 3
Классы: 9

Докажите, что композиция двух гомотетий с коэффициентами k1 и k2, где k1k2$ \ne$1, является гомотетией с коэффициентом k1k2, причем ее центр лежит на прямой, соединяющей центры этих гомотетий. Исследуйте случай k1k2 = 1.
Прислать комментарий     Решение


Задача 58003

Темы:   [ Композиции гомотетий ]
[ Гомотетичные окружности ]
[ Окружность, вписанная в угол ]
[ Гомотетия помогает решить задачу ]
Сложность: 4+
Классы: 9,10

Общие внешние касательные к парам окружностей S1 и S2, S2 и S3, S3 и S1 пересекаются в точках A, B и C соответственно. Докажите, что точки A, B и C лежат на одной прямой.
Прислать комментарий     Решение


Задача 58004

Тема:   [ Композиции гомотетий ]
Сложность: 4+
Классы: 9,10,11

Трапеции ABCD и APQD имеют общее основание AD, причем длины всех их оснований попарно различны. Докажите, что на одной прямой лежат точки пересечения следующих пар прямых:
а) AB и CD, AP и DQ, BP и CQ;
б) AB и CD, AQ и DP, BQ и CP.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .