ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дан массив. Требуется удалить из него элемент, стоящий на месте номер B,
сдвинув все последующие элементы влево.

Входные данные
Во входном файле записано сначала число N - количество элементов массива
(2<=N<=100), затем N чисел из диапазона Integer - элементы массива,
а затем число B (1<=B<=N).

Выходные данные
В выходной файл выведите N-1 число - элементы массива с удаленным B-м элементом.

Примечание
Вы должны удалить элемент непосредственно из массива, а не сделать
вид при выводе данных, что у вас такого элемента нет. Также вы не
должны для этого заводить в программе дополнительный массив.

То есть ввод данных осуществляется следующим фрагментом:
read(fi,n);
for i:=1 to n do read(fi,a[i]);
read(fi,b);

А вывод - следующим:
for i:=1 to n-1 do write(fo,a[i],' ');

Необходимые фрагменты вы можете найти в файле P128.PAS

Пример входного файла
5
1 3 5 6 7
2

Пример выходного файла
1 5 6 7

Текст программы P128.PAS

const nmax=100;

var a:array[1..nmax] of integer;
    n:integer;
    i:integer;
    b:integer;
    fi,fo:text;

begin
assign(fi,'input.txt');
reset(fi);
assign(fo,'output.txt');
rewrite(fo);

read(fi,n);
for i:=1 to n do read(fi,a[i]);
read(fi,b);

{Вы должны писать здесь}

for i:=1 to n-1 do write(fo,a[i],' ');
close(fi);
close(fo);
end.

Вниз   Решение


В треугольнике ABC на основании AC взяты точки P и Q так, что  AP < AQ.  Прямые BP и BQ делят медиану AM на три равные части. Известно, что  PQ = 3.
Найдите AC.

ВверхВниз   Решение


Пусть M — центр масс n-угольника A1...An; M1,..., Mn — центры масс (n - 1)-угольников, полученных из этого n-угольника выбрасыванием вершин A1,..., An соответственно. Докажите, что многоугольники A1...An и  M1...Mn гомотетичны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



Задача 79272  (#19.006)

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные многоугольники ]
[ Вписанные и описанные многоугольники ]
[ Итерации ]
[ Окружность, вписанная в угол ]
[ Лемма о вложенных отрезках ]
Сложность: 6-
Классы: 9,10,11

Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.
Прислать комментарий     Решение


Задача 57985  (#19.007)

Тема:   [ Гомотетичные многоугольники ]
Сложность: 4+
Классы: 9

Пусть R и r — радиусы описанной и вписанной окружностей треугольника. Докажите, что R$ \ge$2r, причем равенство достигается лишь для равностороннего треугольника.
Прислать комментарий     Решение


Задача 57986  (#19.008)

Темы:   [ Гомотетичные многоугольники ]
[ Основные свойства центра масс ]
Сложность: 4+
Классы: 9,10,11

Пусть M — центр масс n-угольника A1...An; M1,..., Mn — центры масс (n - 1)-угольников, полученных из этого n-угольника выбрасыванием вершин A1,..., An соответственно. Докажите, что многоугольники A1...An и  M1...Mn гомотетичны.
Прислать комментарий     Решение


Задача 57987  (#19.009)

Темы:   [ Гомотетичные многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Выпуклые многоугольники ]
[ Подобные фигуры ]
Сложность: 5
Классы: 9,10,11

Докажите, что любой выпуклый многоугольник $ \Phi$ содержит два непересекающихся многоугольника $ \Phi_{1}^{}$ и $ \Phi_{2}^{}$, подобных $ \Phi$ с коэффициентом 1/2.
Прислать комментарий     Решение


Задача 55767  (#19.010)

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Гомотетия (ГМТ) ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

На окружности фиксированы точки A и B, а точка C движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников ABC.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .