ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дана окружность ω и точка A вне её. Через A проведены две прямые, одна из которых пересекает ω в точках B и C, а другая – в точках D и E (D лежит между A и E). Прямая, проходящая через D и параллельная BC, вторично пересекает ω в точке F, а прямая AF – в точке T. Пусть M – точка пересечения прямых ET и BC, а N – точка, симметричная A относительно M. Докажите, что описанная окружность треугольника DEN проходит через середину отрезка BC.

Вниз   Решение


Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 46]      



Задача 57863  (#17.000.1)

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что окружность при осевой симметрии переходит в окружность.
Прислать комментарий     Решение


Задача 57864  (#17.000.2)

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.
Прислать комментарий     Решение


Задача 57865  (#17.000.3)

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.
Прислать комментарий     Решение


Задача 57866  (#17.000.4)

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.
Прислать комментарий     Решение


Задача 55632  (#17.001)

Темы:   [ Симметрия помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Точка M лежит на диаметре AB окружности. Хорда CD окружности проходит через точку M и пересекает прямую AB под углом в 45°.
Докажите, что величина  CM² + DM²  не зависит от выбора точки M.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 46]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .