|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны? По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.) Пусть $a$, $b$, $c$, $d$ и $n$ — натуральные числа. Докажите, что если числа $(a-b)(c-d)$ и $(a-c)(b-d)$ делятся на $n$, то и число $(a-d)(b-c)$ делится на $n$. Правильный многоугольник A1...An вписан в окружность радиуса R с центром O, X — произвольная точка. |
Страница: 1 2 3 4 5 >> [Всего задач: 24]
Число сторон многоугольника A1...An нечётно. Докажите, что:
Существует ли правильный многоугольник, длина одной диагонали которого равна сумме длин двух других диагоналей?
Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть a =
Правильный многоугольник A1...An вписан в окружность радиуса R с центром O, X — произвольная точка.
Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Страница: 1 2 3 4 5 >> [Всего задач: 24] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|