Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
Правильный n-угольник A1...An вписан в окружность радиуса R; X – точка этой окружности. Докажите, что
а) Правильный n-угольник A1...An
вписан в окружность радиуса 1 с центром O; ei =
, u –
произвольный вектор.
Докажите, что
(u, ei)ei = ½ nu.
б) Из произвольной точки X опущены перпендикуляры XC1,..., XCn на стороны правильного n-угольника (или на их продолжения).
Докажите, что
где O – центр n-угольника.
|
|
Сложность: 4 Классы: 8,9,10
|
Доказать, что можно расставить в вершинах правильного n-угольника
действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.
Правильный (4k+2)-угольник вписан в окружность радиуса R с центром O.
Докажите, что сумма длин отрезков, высекаемых углом
AkOAk+1 на прямых
A1A2k, A2A2k–1, ..., AkAk+1, равна R.
|
|
Сложность: 4+ Классы: 10,11
|
Правильный n-угольник вписан в единичную окружность. Докажите, что
а) сумма квадратов длин всех сторон и всех диагоналей равна n²;
б) сумма длин всех сторон и всех диагоналей равна n ctg π/2n;
в) произведение длин всех сторон и всех диагоналей равно nn/2.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]