ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?

Вниз   Решение


Из произвольной точки M, лежащей внутри данного угла с вершиной A, опущены перпендикуляры MP и MQ на стороны угла. Из точки A опущен перпендикуляр AK на отрезок PQ. Докажите, что  $ \angle$PAK = $ \angle$MAQ.

ВверхВниз   Решение


На доске написано n выражений вида  *x² + *x + * = 0  (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?

ВверхВниз   Решение


В коробке лежит 300 спичек. За ход разрешается взять из коробка не более половины имеющихся в нем спичек. Проигрывает тот, кто не может сделать ход.

ВверхВниз   Решение


Найдите геометрическое место таких точек X, что касательные, проведенные из X к данной окружности, имеют данную длину.

ВверхВниз   Решение


На сторонах AB, BC, CD и DA квадрата ABCD построены внутренним образом правильные треугольники ABK, BCL, CDM и DAN. Докажите, что середины сторон этих треугольников (не являющихся сторонами квадрата) и середины отрезков KL, LM, MN и NK образуют правильный двенадцатиугольник.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 57068

Темы:   [ Правильные многоугольники ]
[ Площадь треугольника (через высоту и основание) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 9

Бумажная лента постоянной ширины завязана простым узлом и затем стянута так, чтобы узел стал плоским (см. рис.).
Докажите, что узел имеет форму правильного пятиугольника.

Прислать комментарий     Решение

Задача 57074

Темы:   [ Правильные многоугольники ]
[ Взаимное расположение двух окружностей ]
Сложность: 3+
Классы: 9

В правильном n-угольнике  (n ≥ 3)  отмечены середины всех сторон и диагоналей.
Какое наибольшее число отмеченных точек лежит на одной окружности?

Прислать комментарий     Решение

Задача 55373

Темы:   [ Поворот помогает решить задачу ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Правильные многоугольники ]
[ Векторы сторон многоугольников ]
[ Центр масс ]
Сложность: 4-
Классы: 8,9,10

Пусть О – центр правильного многоугольника A1A2A3...AnX – произвольная точка плоскости. Докажите, что:
   a)  


   б)   

Прислать комментарий     Решение

Задача 57069

Темы:   [ Правильные многоугольники ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 9

На сторонах AB, BC, CD и DA квадрата ABCD построены внутренним образом правильные треугольники ABK, BCL, CDM и DAN. Докажите, что середины сторон этих треугольников (не являющихся сторонами квадрата) и середины отрезков KL, LM, MN и NK образуют правильный двенадцатиугольник.

Прислать комментарий     Решение

Задача 57072

Темы:   [ Правильные многоугольники ]
[ Теоремы Чевы и Менелая ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4-
Классы: 9,10,11

В правильном восемнадцатиугольнике A0...A17 проведены диагонали A0Ap+3, Ap+1A18–r и A1Ap+q+3.
Докажите, что указанные диагонали пересекаются в одной точке в любом из следующих случаев:
  а)  {p, q, r} = {1, 3, 4},
  б)  {p, q, r} = {2, 2, 3}.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .