|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Известно, что число a положительно, а неравенство 10 < ax < 100 имеет ровно пять решений в натуральных числах. Имеется два набора чисел a1 > a2 > ... > an и b1 > b2 > ... > bn. Доказать, что a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1. Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть a = Можно ли найти десять таких последовательных натуральных чисел, что сумма их квадратов равна сумме квадратов следующих за ними девяти последовательных натуральных чисел? Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа. Из вершины C прямого угла треугольника ABC опущена высота CK, и в треугольнике ACK проведена биссектриса CE. Прямая, проходящая через точку B параллельно CE, пересекает CK в точке F. Докажите, что прямая EF делит отрезок AC пополам. |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 176]
Окружность S касается окружностей S1 и S2 в точках A1 и A2.
б) Докажите, что точки пересечения серединных перпендикуляров к биссектрисам треугольников и продолжений соответствующих сторон лежат на одной прямой.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 176] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|