ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Окружность обладает тем свойством, что внутри неё можно двигать правильный треугольник так, чтобы каждая вершина треугольника описывала эту окружность. Найти замкнутую несамопересекающуюся кривую, отличную от окружности, внутри которой также можно двигать правильный треугольник так, чтобы каждая его вершина описывала эту кривую.

Вниз   Решение


Петя и Вася живут в соседних домах (см. план на рисунке). Вася живет в четвёртом подъезде. Известно, что Пете, чтобы добежать до Васи кратчайшим путем (не обязательно идущим по сторонам клеток), безразлично, с какой стороны обегать свой дом. Определите, в каком подъезде живет Петя.

ВверхВниз   Решение


Кащей Бессмертный загадывает три натуральных числа: a, b, c. Иван Царевич должен назвать ему три числа: XYZ, после чего Кащей сообщает ему сумму aX + bY + cZ, затем Иван Царевич говорит еще один набор чисел xyz и Кащей сообщает ему сумму ax + by + cz. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Какие числа он должен загадать, чтобы остаться в живых?

ВверхВниз   Решение


Касательные к описанной окружности неравнобедренного треугольника ABC в точках A, B и C пересекают продолжения сторон в точках A1, B1 и C1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.=-1



Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 56902

Темы:   [ Теоремы Чевы и Менелая ]
[ Касающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 9,10

Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

Прислать комментарий     Решение

Задача 56898

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1 соответственно. Докажите, что точки A1, B1 и C1 лежат на одной прямой тогда и только тогда, когда

$\displaystyle {\frac{\overline{BA_1}}{\overline{CA_1}}}$ . $\displaystyle {\frac{\overline{CB_1}}{\overline{AB_1}}}$ . $\displaystyle {\frac{\overline{AC_1}}{\overline{BC_1}}}$ = 1        (теорема Менелая).


Прислать комментарий     Решение

Задача 56899

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

а) В треугольнике ABC проведены биссектрисы внешних углов AA1, BB1 и CC1 (точки A1, B1 и C1 лежат на прямых BC, CA и AB). Докажите, что точки A1, B1 и C1 лежат на одной прямой.
б) В треугольнике ABC проведены биссектрисы AA1 и BB1 и биссектриса внешнего угла CC1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.
Прислать комментарий     Решение


Задача 56900

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

Касательные к описанной окружности неравнобедренного треугольника ABC в точках A, B и C пересекают продолжения сторон в точках A1, B1 и C1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.=-1



Прислать комментарий     Решение


Задача 56901

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

Решите задачу 5.85, а) с помощью теоремы Менелая.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .