ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC проведена биссектриса AD. Пусть O, O1 и O2 – центры описанных окружностей треугольников ABC, ABD и ACD.
Докажите, что OO1 = OO2.

Вниз   Решение


Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

ВверхВниз   Решение


Возрастающая последовательность натуральных чисел $a_1 < a_2 < \dots$ такова, что при каждом целом $n > 100$ число $a_n$ равно наименьшему натуральному числу, большему чем $a_{n-1}$ и не делящемуся ни на одно из чисел $a_1, a_2, \dots, a_{n-1}$. Докажите, что в такой последовательности лишь конечное количество составных чисел.

ВверхВниз   Решение


а) В треугольнике ABC проведены биссектрисы внешних углов AA1, BB1 и CC1 (точки A1, B1 и C1 лежат на прямых BC, CA и AB). Докажите, что точки A1, B1 и C1 лежат на одной прямой.
б) В треугольнике ABC проведены биссектрисы AA1 и BB1 и биссектриса внешнего угла CC1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 56902

Темы:   [ Теоремы Чевы и Менелая ]
[ Касающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 9,10

Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

Прислать комментарий     Решение

Задача 56898

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1 соответственно. Докажите, что точки A1, B1 и C1 лежат на одной прямой тогда и только тогда, когда

$\displaystyle {\frac{\overline{BA_1}}{\overline{CA_1}}}$ . $\displaystyle {\frac{\overline{CB_1}}{\overline{AB_1}}}$ . $\displaystyle {\frac{\overline{AC_1}}{\overline{BC_1}}}$ = 1        (теорема Менелая).


Прислать комментарий     Решение

Задача 56899

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

а) В треугольнике ABC проведены биссектрисы внешних углов AA1, BB1 и CC1 (точки A1, B1 и C1 лежат на прямых BC, CA и AB). Докажите, что точки A1, B1 и C1 лежат на одной прямой.
б) В треугольнике ABC проведены биссектрисы AA1 и BB1 и биссектриса внешнего угла CC1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.
Прислать комментарий     Решение


Задача 56900

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

Касательные к описанной окружности неравнобедренного треугольника ABC в точках A, B и C пересекают продолжения сторон в точках A1, B1 и C1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.=-1



Прислать комментарий     Решение


Задача 56901

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

Решите задачу 5.85, а) с помощью теоремы Менелая.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .