ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Два квадрата и равнобедренный треугольник расположены так, как показано на рисунке (вершина K большого квадрата лежит на стороне треугольника). Докажите, что точки A, B и C лежат на одной прямой.

Вниз   Решение


Автор: Фольклор

На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным?

ВверхВниз   Решение


Сумма углов при основании трапеции равна  90o. Докажите, что отрезок, соединяющий середины оснований, равен полуразности оснований.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 176]      



Задача 56851  (#05.018.1)

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 3
Классы: 8

На медиане BM и на биссектрисе BK треугольника ABC (или на их продолжениях) взяты точки D и E так, что DK || AB и EM || BC. Докажите, что ED$ \bot$BK.
Прислать комментарий     Решение


Задача 56852  (#05.019)

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 4
Классы: 8

Сумма углов при основании трапеции равна  90o. Докажите, что отрезок, соединяющий середины оснований, равен полуразности оснований.
Прислать комментарий     Решение


Задача 56853  (#05.021B)

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 4
Классы: 8

Диагонали AC и BD параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём $ \angle$AMO = $ \angle$MAD. Докажите, что точка M равноудалена от точек C и D.
Прислать комментарий     Решение


Задача 53392  (#05.020)

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что  CB = BE.

Прислать комментарий     Решение

Задача 56855  (#05.021)

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC с прямым углом C проведены высота CD и биссектриса CF; DK и DL – биссектрисы треугольников BDC и ADC.
Докажите, что CLFK – квадрат.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 176]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .