ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.
  а) Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
  б) А квадрат площади 1/2019?

Вниз   Решение


На окружности фиксированы точки A и B, а точка C движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников ABC.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



Задача 79272  (#19.006)

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные многоугольники ]
[ Вписанные и описанные многоугольники ]
[ Итерации ]
[ Окружность, вписанная в угол ]
[ Лемма о вложенных отрезках ]
Сложность: 6-
Классы: 9,10,11

Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.
Прислать комментарий     Решение


Задача 57985  (#19.007)

Тема:   [ Гомотетичные многоугольники ]
Сложность: 4+
Классы: 9

Пусть R и r — радиусы описанной и вписанной окружностей треугольника. Докажите, что R$ \ge$2r, причем равенство достигается лишь для равностороннего треугольника.
Прислать комментарий     Решение


Задача 57986  (#19.008)

Темы:   [ Гомотетичные многоугольники ]
[ Основные свойства центра масс ]
Сложность: 4+
Классы: 9,10,11

Пусть M — центр масс n-угольника A1...An; M1,..., Mn — центры масс (n - 1)-угольников, полученных из этого n-угольника выбрасыванием вершин A1,..., An соответственно. Докажите, что многоугольники A1...An и  M1...Mn гомотетичны.
Прислать комментарий     Решение


Задача 57987  (#19.009)

Темы:   [ Гомотетичные многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Выпуклые многоугольники ]
[ Подобные фигуры ]
Сложность: 5
Классы: 9,10,11

Докажите, что любой выпуклый многоугольник $ \Phi$ содержит два непересекающихся многоугольника $ \Phi_{1}^{}$ и $ \Phi_{2}^{}$, подобных $ \Phi$ с коэффициентом 1/2.
Прислать комментарий     Решение


Задача 55767  (#19.010)

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Гомотетия (ГМТ) ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

На окружности фиксированы точки A и B, а точка C движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников ABC.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .