|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан треугольник ABC. Пусть A1, B1, C1 — точки пересечения прямых AS, BS, CS соответственно со сторонами BC, CA, AB треугольника, где S — произвольная внутренняя точка треугольника ABC. Доказать, что, по крайней мере, в одном из полученных четырёхугольников AB1SC1, C1SA1B, A1SB1C углы при вершинах C1, B1, или C1, A1, или A1, B1 &8212; одновременно оба неострые. На улице дома стоят друг напротив друга, всего 50 пар. На правой стороне улицы расположены дома с чётными натуральными номерами, на левой – с нечётными натуральными номерами, номера возрастают от начала улицы к концу на каждой стороне, но идут не обязательно подряд (возможны пропуски). Для каждого дома на правой стороне улицы нашли разность между его номером и номером дома напротив, и оказалось, что все найденные числа различны. Наибольший номер дома на улице равен $n$. Найдите наименьшее возможное значение $n$. Две окружности с центрами M и N, лежащими на стороне AB треугольника ABC, касаются друг друга и пересекают стороны AC и BC в точках A, P и B, Q соответственно. Причем AM = PM = 2, BN = = QN = 5. Найдите радиус описанной около треугольника ABC окружности, если известно, что отношение площади треугольника AQN к площади треугольника MPB равно 15
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 6702]
В окружность вписан равнобедренный треугольник с основанием
a и углом при основании
В выпуклом пятиугольнике ABCDE с единичными сторонами середины P, Q сторон AB, CD и середины S, T сторон BC, DE соединены отрезками PQ и ST. Пусть M и N – середины отрезков PQ и ST. Найдите длину отрезка MN.
В треугольник ABC со сторонами AB = 5, BC = 7, CA = 10 вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK.
Один из четырёх углов, образующихся при пересечении двух прямых, равен 41°. Чему равны три остальных угла?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 6702] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|