|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
год/номер:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Все натуральные числа, бóльшие единицы, раскрасили в два цвета – синий и красный – так, что сумма каждых двух синих (в том числе одинаковых) – синяя, а произведение каждых двух красных (в том числе одинаковых) – красное. Известно, что при раскрашивании были использованы оба цвета и что число 1024 покрасили в синий цвет. Какого цвета при этом могло оказаться число 2017? Докажите, что n³ + 2n делится на 3 для любого натурального n. Решите задачу 5.85, а) с помощью теоремы Менелая. В выпуклом четырехугольнике ABCD взят четырехугольник KLMN, образованный центрами тяжести треугольников ABC, BCD, DBA и CDA. Доказать, что прямые, соединяющие середины противоположных сторон четырехугольника ABCD, пересекаются в той же точке, что и прямые, соединяющие середины противоположных сторон четырехугольника KLMN. Доказать, что в произведении (1 – x + x² – x³ + ... – x99 + x100)(1 + x + x² + x³ + ... + x99 + x100) после раскрытия скобок и приведения подобных членов не остаётся членов, содержащих x в нечётной степени. В турнире по олимпийской системе (проигравший выбывает) участвует 50 боксеров. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 371]
Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10?
Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых?
В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки?
Придя в тир, Петя купил 5 пуль. За каждый успешный выстрел ему дают еще 5 пуль. Петя утверждает, что он сделал 50 выстрелов и 8 раз попал в цель, а его друг Вася говорит, что этого не может быть. Кто из мальчиков прав?
В турнире по олимпийской системе (проигравший выбывает) участвует 50 боксеров.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 371] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|