ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 32028  (#01)

Темы:   [ Деление с остатком ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

Все натуральные числа поделены на хорошие и плохие. Известно, что если число m хорошее, то и число  m + 6  тоже хорошее, а если число n плохое, то и число  n + 15  тоже плохое. Может ли среди первых 2000 чисел быть ровно 1000 хороших?

Прислать комментарий     Решение

Задача 32029  (#02)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Разбиения на пары и группы; биекции ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 6,7,8

Какое наибольшее число пешек можно поставить на шахматную доску (не более одной пешки на каждое поле), если:
  1) на поле e4 пешку ставить нельзя;
  2) никакие две пешки не могут стоять на полях, симметричных относительно поля e4?

Прислать комментарий     Решение

Задача 32030  (#03)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
Сложность: 2+
Классы: 7,8,9

Сколько двоек будет в разложении на простые множители числа 1984! ?

Прислать комментарий     Решение

Задача 32031  (#04)

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

В ряд выписаны в порядке возрастания числа, делящиеся на 9: 9, 18, 27, 36, ... . Под каждым числом этого ряда записана его сумма цифр.
  а) На каком месте во втором ряду впервые встретится число 81?
  б) Что встретится раньше: четыре раза подряд число 27 или один раз число 36?

Прислать комментарий     Решение

Задача 32032  (#05)

Темы:   [ Неравенство треугольника (прочее) ]
[ Принцип Дирихле (углы и длины) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9

На плоскости имеется 1983 точки и окружность единичного радиуса.
Доказать, что на окружности найдётся точка, сумма расстояний от которой до данных точек не меньше 1983.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .