ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?

Вниз   Решение


Правильный шестиугольник разрезан на N равновеликих параллелограммов. Доказать, что N делится на 3.

ВверхВниз   Решение


Во что перейдёт угол градусной меры α вершиной в начале координат в результате преобразования  w = z³?

ВверхВниз   Решение


Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке EAD — биссектриса треугольника ABC. Докажите, что AE = ED.

ВверхВниз   Решение


Найдите длину кратчайшего пути по поверхности единичного куба между его противоположными вершинами.

ВверхВниз   Решение


Марсиане делят сутки на 13 часов. После того, как Марсовский Заяц уронил часы в чай, у них изменилась скорость вращения секундной стрелки, а скорость вращения других стрелок осталась прежней. Известно, что каждую полночь все три стрелки совпадают. Сколько всего за сутки может быть таких моментов времени, когда три стрелки совпадут?

ВверхВниз   Решение


Потроить треугольник по сторонам a, b и биссектрисе к стороне c lc.

ВверхВниз   Решение


Решить в простых числах уравнение  pqr = 7(p + q + r).

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



Задача 31298  (#26)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Доказать, что  32n – 1   a) делится на 2n+2;   б) не делится на 2n+3.

Прислать комментарий     Решение

Задача 31299  (#27)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Найти все натуральные n, для которых  2n + 33  – точный квадрат.

Прислать комментарий     Решение

Задача 31300  (#28)

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7,8

Решить в целых числах:  a² + b² = 3(c² + d²).

Прислать комментарий     Решение

Задача 31301  (#29)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7,8

Найти наименьшее значение выражения  |36k – 5l|  (k, l – натуральные числа).

Прислать комментарий     Решение

Задача 31302  (#30)

Темы:   [ Уравнения в целых числах ]
[ Простые числа и их свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 6,7,8

Решить в простых числах уравнение  pqr = 7(p + q + r).

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .