|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Решите систему уравнений: 1 – x1x2 = 0, 1 – x2x3 = 0, ... 1 – x2000x2001 = 0, 1 – x2001x1 = 0. Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны. Два шара касаются плоскости α в точках A и B и расположены по разные стороны от этой плоскости. Расстояние между центрами этих шаров равно 10. Третий шар внешним образом касается двух данных шаров, а его центр O лежит в плоскости α . Известно, что AO = OB = 2 Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что MK = KN. |
Страница: << 1 2 3 >> [Всего задач: 15]
Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что MK = KN.
Дан правильный девятиугольник.
Найдите наибольшее значение выражения x² + y², если |x – y| ≤ 2 и |3x + y| ≤ 6.
В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников.
Коэффициенты квадратного уравнения ax² + bx + c = 0 удовлетворяют условию 2a + 3b + 6c = 0.
Страница: << 1 2 3 >> [Всего задач: 15] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|