|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Как из семи ''уголков'', каждый из которых склеен из трёх кубиков 1×1×1, и шести отдельных кубиков 1×1×1 составить большой куб 3×3×3? Можно ли это сделать так, чтобы все отдельные кубики оказались в серединах граней большого куба?
Верно ли, что в пространстве два угла с соответственно перпендикулярными сторонами либо равны, либо составляют в сумме 180°? |
Страница: 1 2 3 >> [Всего задач: 15]
Решите неравенство:
Верно ли, что в пространстве два угла с соответственно перпендикулярными сторонами либо равны, либо составляют в сумме 180°?
В клетках квадратной таблицы 10×10 стоят ненулевые цифры. В каждой строчке и в каждом столбце из всех стоящих там цифр произвольным образом составлено десятизначное число. Может ли оказаться так, что из двадцати получившихся чисел ровно одно не делится на 3?
Найдите все пары натуральных чисел (а, b), для которых выполняется равенство НОК(а, b) – НОД(а, b) = ab/5.
Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что f(1) + f(2) = 10 и
Страница: 1 2 3 >> [Всего задач: 15] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|