|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В остроугольном треугольнике $ABC$ высоты $AH$ и $CH$ пересекают стороны $BC$ и $AB$ в точках $A_1$ и $C_1$. Точки $A_2$ и $C_2$ симметричны относительно $AC$ точкам $A_1$ и $C_1$. Докажите, что расстояние между центрами описанных окружностей треугольников $C_2HA_1$ и $C_1HA_2$ равно $AC$. Докажите, что не существует многочлена степени не ниже двух с целыми неотрицательными коэффициентами, значение которого при любом простом p является простым числом. |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Приведите пример многочлена P(x) степени 2001, для которого P(x) + P(1 – x) ≡ 1.
Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами.
В треугольнике ABC проведены биссектриса AK, медиана BL и высота CM. Треугольник KLM – равносторонний.
В игре "Десант" две армии захватывают страну. Они ходят по очереди, каждым ходом занимая один из свободных городов. Первый свой город армия захватывает с воздуха, а каждым следующим ходом она может захватить любой город, соединённый дорогой с каким-нибудь уже занятым этой армией городом. Если таких городов нет, армия прекращает боевые действия (при этом, возможно, другая армия свои действия продолжает). Найдётся ли такая схема городов и дорог, что армия, ходящая второй, сможет захватить более половины всех городов, как бы ни действовала первая армия? (Число городов конечно, каждая дорога соединяет ровно два города.)
Докажите, что не существует многочлена степени не ниже двух с целыми неотрицательными коэффициентами, значение которого при любом простом p является простым числом.
Страница: << 1 2 3 4 5 >> [Всего задач: 24] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|